Several Parallel Algorithms for Solving Nonlinear Systems with Symmetric and Positive Definite Jacobians

نویسندگان

  • Jesús Peinado
  • Antonio M. Vidal
چکیده

In this work we describe two sequential algorithms and their parallel counterparts for solving nonlinear systems, when the Jacobian matrix is symmetric and positive definite. This case appears frequently in unconstrained optimization problems. Both algorithms are based on Newton’s method. The first solves the inner iteration with Cholesky decomposition while the second is based on the inexact Newton methods family, where a preconditioned CG method has been used for solving the linear inner iteration. In this latter case and to control the inner iteration as far as possible and avoid the oversolving problem, we also parallelized several forcing term criterions and used parallel preconditioning techniques. We implemented the parallel algorithms using the SCALAPACK library. Experimental results have been obtained using a cluster of Pentium II PC's connected through a Myrinet network. To test our algorithms we used four different problems. The algorithms show good scalability in most cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DECOMPOSITION METHOD FOR SOLVING FULLY FUZZY LINEAR SYSTEMS

In this paper, we investigate the existence of a positive solution of fully fuzzy linear equation systems. This paper mainly to discuss a new decomposition of a nonsingular fuzzy matrix, the symmetric times triangular (ST) decomposition. By this decomposition, every nonsingular fuzzy matrix can be represented as a product of a fuzzy symmetric matrix S and a fuzzy triangular matrix T.

متن کامل

On the numerical solution of generalized Sylvester matrix equations

‎The global FOM and GMRES algorithms are among the effective‎ ‎methods to solve Sylvester matrix equations‎. ‎In this paper‎, ‎we‎ ‎study these algorithms in the case that the coefficient matrices‎ ‎are real symmetric (real symmetric positive definite) and extract‎ ‎two CG-type algorithms for solving generalized Sylvester matrix‎ ‎equations‎. ‎The proposed methods are iterative projection metho...

متن کامل

Numerical and computational efficiency of solvers for two-phase problems

We consider two-phase flow problems, modelled by the Cahn-Hilliard equation. In our work, the nonlinear fourth-order equation is decomposed into a system of two second-order equations for the concentration and the chemical potential. We analyse solution methods based on an approximate two-by-two block factorization of the Jacobian of the nonlinear discrete problem. We propose a preconditioning ...

متن کامل

WZ factorization via Abay-Broyden-Spedicato algorithms

Classes of‎ ‎Abaffy-Broyden-Spedicato (ABS) methods have been introduced for‎ ‎solving linear systems of equations‎. ‎The algorithms are powerful methods for developing matrix‎ ‎factorizations and many fundamental numerical linear algebra processes‎. ‎Here‎, ‎we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW‎ ‎factorizations of a nonsingular matrix as well as...

متن کامل

BDDC for Nonsymmetric Positive Definite and Symmetric Indefinite Problems

The balancing domain decomposition methods by constraints are extended to solving both nonsymmetric, positive definite and symmetric, indefinite linear systems. In both cases, certain nonstandard primal constraints are included in the coarse problems of BDDC algorithms to accelerate the convergence. Under the assumption that the subdomain size is small enough, a convergence rate estimate for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003